
A Bayesian Nonparametric Model Fit statistic of Item Response Models 

Purpose 

As more and more states move to use the computer adaptive test for their assessments, 

item response theory (IRT) has been widely applied. Then investigating the fit of a parametric 

model becomes an important measurement process before building the item pool. If a misfitting 

item has been put in the item pool, it will cause the item selection and ability estimation error 

and then affect the validity of the test. Several researchers have developed IRT model fit 

assessing tests (Douglas & Cohen, 2001; Orlando & Thissen, 2000; Yen, 1981). However, these 

tests have some drawbacks might lead to over identify misfitting items and provide no help on 

investigating the reasons for item misfitting. Therefore, this study aims to propose a new 

Bayesian nonparametric item fit statistics and compare this new item fit statistics with more 

traditional item fit statistics to indicate the advantages of this method.  

Theoretical Framework 

While many of studies have developed and compared different approaches for model fit 

assessment, this topic remains a major hurdle to overcome for effective implementing IRT model 

(Hambleton & Han, 2005). Most of these approaches are X2-based item fit statistics: Yen’s 

(1981) Q1 statistic, Orlando and Thissen’s (2000) S-X2 statistics, and G2. However, these X2-

based item fit statistics have several drawbacks. First, they are sensitive to sample size 

(Hambleton & Swaminathan, 1985). When the sample size is large, this statistic test tends to 

over reject models because with large sample sizes statistical power is available to detect even 

very small discrepancies between the model and data. Since the state tests always have large 

sample size, almost all items have a significant X2 statistic and do not fit the model. Second, 

several popular fit statistics do not have a X2 distribution because ability estimation error, treating 



estimated parameters as true values (Stone & Zhang, 2003), and the degrees of freedom are in 

question (Orlando & Thissen, 2000). This drawbacks lead to falsely identify valid items as 

misfitting. Third, these fit statistics are not able to indicate the location and magnitude of misfit 

for a misfitting item. As a result, content experts cannot explain the item misfitting reasons and 

give suggestions on changing the model. Because of these limitations of X2-based fit statistics, 

Douglas and Cohen (2001) developed a nonparameteric approach for assessing the model fit of 

dichotomous IRT model, hereafter refered to as kernel smoothing method. This method uses the 

kernel smoothing to draw a nonparametric item response function (IRF) and compares it with 

parametric IRF. Later, Liang and Wells generalized it for assessing the polytomouse IRT model 

fit. Liang, Wells and Hambleton (2014) compared this approach with traditional X2-based item 

fit statistics (S-X2 and G2) under different conditions by manipulating test length, sample size, 

IRT models, and ability distribution. Their result indicated that this kernel smoothing method has 

exhibited controlled Type I error rates and adequate power. Moreover, this method provides a 

clear graphical representation of model misfit. However, in all these studies applying the kernel 

smoothing model fit assessment, the bootstrapping procedure was performed to construct an 

empirical distribution for determining the significance level of fitting statistics. This 

bootstrapping procedure did not count the uncertainty of the parameter estimation because it 

used the item parameter estimates previously obtained. The Bayesian statistic used in this study 

applying the posterior predictive model checking (PPMC) method (Gelman, Meng, & Stern, 

1996; Guttman, 1967; Rubin, 1984) take the uncertainty of the parameter estimation into account 

by integrating over the parameters. Thus, this study will use the kernel smoothing and PPMC 

method to develop a Bayesian nonparametric model fit statistics and compare it with S-X2 and 

bootstrapping statistics using simulation data and empirical data.    



Method 

The Monte Carlo simulation study was performed to examine the Type I error rate and 

power of the proposed statistic on detecting misfitting items in a mixed-format test under 

conditions differing on significance levels. In addition, this proposed Bayesian nonparametric 

statistic was being compared with: 1) S-X2, provided by the computer software IRTPro (Cai, 

Thissen, & du Toit, 2011); 2) the bootstrapping kernel smoothing method. An empirical data set 

from a mixed-format test was analyzed to explore the use of the Bayesian nonparametric 

approach for assessing the model fit. 

Kernel smoothing method. To apply the kernel smoothing method in educational 

assessment data, Yi is a binary random variable denoting whether the score of one item is 

obtained or not and the latent trait variable is Θ. However, the latent trait variable Θ could not be 

observed directly. An estimator 𝛩̂ will replace Θ. The nonparametric IRF estimated by the kernel 

smoothing method is as follows: 
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In order to estimate IRF, yjs are averaged in the small range around every evaluation 

point θ by their weights. The weights of yjs are K(u), a nonnegative symmetric kernel function 

with mode at 0,which is the monotonic decreasing of the absolute value of u (Copas, 1983; 

Douglas, 1997). In this research, Gaussian function is used as the kernel function in equation 1 

because it is a typical choice of the kernel function (Douglas, 1997): 

𝐾(𝑢) = exp (−
𝑢2

2
) .                                                             (2) 



In the IRF expression, h is a parameter called the bandwidth, which controls the 

smoothing amount. The choice of h is a trade-off between the fluctuation of the regression 

function and the bias of the regression function estimation (Copas, 1983; Douglas, 1997). 

Ramsay (1991) suggested an optimal value of h for psychometric binary data is depending on the 

sample size (N): h=1.1*N0.2. In the present research, this value is used for h because Ramsay 

(1991) also showed that this value functioned well under the Gaussian kernel function. In order 

to plot the IRF estimated from equation 1, an estimate of the proficiency of each examinee is 

needed. The 𝜃𝑗  (the estimate of the j-th examinee’s proficiency) is estimated by the ordinal 

ability estimation (Douglas, 1997). In the ordinal ability estimation method, the empirical 

percentile of the examinee in the latent trait distribution is determined using the sum of item 

scores and latent trait distribution G’s inverse function G-1 is used to calculate the proficiency 

based on the empirical percentile. In this research, we choose the standard normal distribution as 

the latent trait distribution.  

PPMC. Suppose ω is the unknown parameters of the assumed model H, y is the observed 

data, p(ω) is the prior distribution of the unknown parameters, and p(y|ω) is the likelihood 

distribution of observed data assuming that the model H is true (Sinharay, 2005), then the 

posterior distribution of unknown parameters is p(ω|y) and 𝑝(𝝎|𝒚)  ∝  𝑝(𝒚|𝝎)𝑝(𝝎). The 

replicated data, yrep, could be interpreted as the data that will be observed in the future or 

predicted and are then replicated using the same model H and parameters drawn from the p(ω| 

y). The posterior predictive distribution of yrep is as follows: 

𝑝(𝒚𝑟𝑒𝑝|𝒚) = ∫ 𝑝(𝒚𝑟𝑒𝑝|𝝎)𝑝(𝝎|𝒚)𝑑𝝎.                                                (33) 

This distribution was calculated from a Bayesian perspective to eliminate the nuisance 

parameters by integrating them out (Bayarri & Berger, 2000). A statistic for measuring model fit 



that was calculated from the observed data is compared to the distribution of the same statistic 

calculated from the replicated data drawn from this distribution and the posterior predictive p-

value (PPP-value) is calculated. This was done to check the model fit (Gelman, Meng, & Stern, 

1996). PPP-value provides a quantitative measure of the degree to which the model is able to 

capture the features of the observed data, in other words, the fit of the model to the observed 

data. The PPP-value is defined as (Bayarri & Berger, 2000): 

𝑝 = 𝑝(𝑇(𝒚𝑟𝑒𝑝) ≥ 𝑇(𝒚)|𝒚) = ∫ 𝑝(𝒚𝑟𝑒𝑝|𝒚)
𝑇(𝒚𝑟𝑒𝑝)≥𝑇(𝒚)

𝑑𝒚𝑟𝑒𝑝.                        (34) 

In this equation, T(y) is a discrepancy measure which is the statistic for measuring model 

fit. Extreme PPP-values, those close to 0, 1, or both (depending on the nature of the discrepancy 

measure), indicate the model does not fit the data (Sinharay et al., 2006). 

Procedure of Bayesian nonparametric fit statistic. The model H in this study was IRT 

model. The parameters ω were item parameters, and proficiency parameters, θs. The observed 

data y were the responses of examinees for all the items. The discrepancy measure T(y) for the i-

th item was as follows: 
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where 𝑃̂𝑞𝑘  and 𝑃̂𝑞𝑘
𝑛𝑜𝑛 are the estimated probability of IRT model and nonparametric model for 

each point and score category; Q is the number of evaluation points (e.g., Q=100); and K is the 

total number of categories.  

The following were procedures of calculating the Bayesian nonparametric fit statistic: 

1. The MCMC algorithm was used to simulate the posterior distributions of item 

parameters and proficiency parameters using the observed data and the IRT model.  



2. A total of N θs was drawn from corresponding posterior distributions. The sample 

size was N. For example, θj of the j-th examinee was drawn from the posterior distribution 

p(θj|y).  

3. The item parameters of n items were drawn from their posterior distributions. 

4. A data set was generated from the IRT model using item parameters and 

proficiency parameters.  

5. The discrepancy measure was calculated for this data set and compared with the 

same discrepancy measure calculated from the observed data. 

6. Steps 2 to 5 were repeated for M (e.g. M=100) times to compute the PPP-value 

for every item. 

Data 

Simulation data. The simulation data were generated from the simulated item parameter 

estimates follow the distributions, a~log-N (0, 0.4) and b~N (0, 1).  Both two-parameter logistic 

model (2PLM) and the graded response model (GRM) were used. Among all items, 80% of them 

are generated from 2PLM and 20% of them are generated from GRM. In each simulated test, the 

20% of misfitting items were generated, and 50% of misfitting items were dichotomous items 

and 50% of misfitting items were polytomous items. The samples size was 3000 and test length 

was 60 items. Two significance levels, α, were 0.05 and 0.01. For each significance levels, 100 

replications were conducted.  

Empirical data. The data came from a large-scale assessment with 53 items at a sample 

size of 3804. Ten partial credit polychromous items were fitted by the GRM and the rest of 

dichotomous items were fitted by the 2PLM. The fit were tested using S-X2, bootstrapping kernel 

smoothing method, and Bayesian nonparametric method. Three statistics were compared for the 



items flagged as misfitting. These misfitting items were further explored by via a graphical 

representation.   

Result 

For simulation data, Table 1 and Table 2 summarize the Type I error rate and power for 

three fit statistics being compared. Table 1 reports the empirical type I error rates of PPMC, 

bootstrapping and S-X2 for the mix format test, 2PLM items and GRM items.  

Table1 

Empirical type I error rates of PPMC, bootstrapping and S-X2 

Significant level Model PPMC Bootstrapping S-X2 

 Mix format 0.088 0.095 0.063 

0.05 2PLM 0.090 0.109 0.062 

 GRM 0.072 0.000 0.07 

 Mix format 0.020 0.029 0.015 

0.01 2PLM 0.020 0.033 0.015 

 GRM 0.020 0.000 0.020 

 

The comparison results of 0.05 and 0.01 significant level indicated that S-X2 has the lowest type 

I error rate for the mix format test and 2PLM items and bootstrapping method has lowest type I 

error for the GRM items. In general, beside the 0 type I error rate of bootstrapping method for 

GRM items, the type I error rates of these three methods under two significant levels are very 

close.  

Table 2 reports the empirical detection rate of PPMC, bootstrapping and S-X2 for the mix 

format test, 2PLM items and GRM items. 

 

 

 

 



Table2. 

Empirical detection rates of PPMC, bootstrapping and S-X2 

Significant level Model PPMC Bootstrapping S-X2 

 Mix format 0.898 0.498 0.983 

0.05 2PLM 0.888 0.995 0.987 

 GRM 0.908 0.000 0.978 

0.01 Mix format 0.765 0.439 0.932 

 2PLM 0.823 0.878 0.923 

 GRM 0.707 0.000 0.940 

 

The comparison results of both significant levels indicated that S-X2 method has the highest 

empirical detection rate for the mix format test, 2PLM items and GRM items. It should be 

noticed that the empirical detection rate for bootstrapping method is very low for GRM items. 

When the significant level is at 0.05, the empirical detection rate of bootstrapping and S-X2 

method is very close. But when the significant level is at 0.01, the S-X2 method has much higher 

empirical detection rate.  

Based on the simulation result, three methods all provide the accurate model checking 

rate for the 2PL model which is indicating by high empirical detection rate and low type I rate 

under both significant levels. But when the model is the GRM, the bootstrapping method cannot 

identify misfit items. The other two methods can identify the misfit GRM items accurately.  

For the empirical data, among 53 items, S-X2 method has identified 22 items as misfitting 

items, bootstrapping method has identified 14 items as misfitting items and PPMC method has 

identified 13 items as misfitting items.  Only four items were identified misfitting by three 

methods. The following graphs includes the IRFs of nonparametric and parametric model for 

these four misfitting items of the assessment.  



 

 

Figure 1. IRFs of nonparametric and parametric model for four misfitting items. 

The nonparametric IRFs indicate the misfitting location is at the middle and high theta 

range for the first item, misfitting location is at the lower theta range for the second item, 

misfitting location is at the low and high theta range for the third item, and mifitting location is at 

the low theta range. 

Significance 

The new proposed Bayesian nonparametric model fit assessing method can be easily 

generalized to any IRT model and count the uncertainty of parameter estimation. This method 

also provides the graph representation of misfitting items for investigation of the location and 

magnitude of misfit. The result from the simulation study indicate this Bayesian nonparametric 

model fit statistics have low type I error and high detection rate. In the empirical study, the 



Bayesian nonparametric method detected reasonable number of misfitting items. These results 

indicate Bayesian nonparametric model fit statistics can be used as a model fit assessing method. 

When Bayesian nonparametric method was compared to other model fit methods in simulation 

study, the detection rates are very similar between the Bayesian nonparametric method and the 

S-X2 method. This result indicates these two model fit methods can check model fit equally well 

and the selection of model fit method depends on the estimation method used for item calibration 

because each method used different item calibration results for model fit checking. For example, 

if the MCMC method is used for estimation, Bayesian nonparametric method should be used for 

model fit checking. If the maximum likelihood method is used for estimation, S-X2 method 

should be used for model fit checking.  
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