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Abstract 

Although specific methodologies vary across the numerous examples of person-fit statistics, in 

general, they work by measuring the extent to which an individual’s observed response vector is 

consistent with expectation as defined in the context of some statistical model. Response patterns 

that are inconsistent with expectation are said to be aberrant, while responses that are consistent 

with expectation are understood to be non-aberrant. This paper discusses the results of a small 

simulation study designed to investigate a proposed method for identifying person-level misfit 

not by evaluating the extent to which the individual’s response pattern conforms to expectation 

as defined by the desired statistical model, but rather by comparing person-level changes in fit 

across nested factor analytic models. The rationale behind this proposed procedure is the 

proposal that cheating behaviors that are intended to be detected by person-fit statistics may 

introduce multidimensionality into the individual’s response pattern, which should be estimable 

using a two-factor model, and this two-factor model should show significant improvement in 

person-level fit for individuals who have engaged in cheating behavior. Implications, limitations, 

and future directions are discussed. 
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Nested Factor Analytic Model Comparison as a Means to Detect Aberrant Response Patterns 

 At their most fundamental level, person-fit statistics provide a means to evaluate the 

extent to which individual response vectors align with expectation as defined by some model. 

Much like model-fit indices, many residual-based person-fit statistics work by comparing 

characteristics of observed data to their expected values, with good fit indicated by close 

alignment between observed and expected values and poor fit indicated by observed values 

deviating from expectation. Person-fit statistics differ from model fit statistics in that model fit 

statistics render a single, overall estimate of fit that summarizes the extent to which the entire 

data set is consistent with expectation, whereas person-fit statistics quantify fit at the individual 

level, with each test-taker receiving a unique estimate of the extent to which his or her response 

vector aligns with expectation. 

Item response theory provides a useful measurement framework for estimating 

differences between expected and observed level of performance by virtue of the item response 

function, which provides conditional probabilities of success on each item given characteristics 

of the item (i.e., difficulty, discrimination, and lower asymptote, depending on the chosen model) 

and the individual’s ability level. By relating the person’s ability level to the characteristics of 

each item, it is simple to obtain predicted values for the individual for each item, which can then 

be compared with the individual’s observed response vector. 

The l0 person-fit statistic provides a straightforward example of a method that compares 

observed responses with expected values, as defined by the parameters estimated in an IRT 

model. In the three parameter logistic (3PL) IRT model, l0 is estimated as 
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where Xij is the observed response of person i to item j, numbered j = 1, 2, …, n; θi is the 
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examinee’s ability level; and Pj(θi) is the examinee’s probability of success on item Xij, given the 

characteristics of the item and the examinee’s ability level. When parameter estimates are 

inserted into equation (1), l0 is equal to the value of the test-taker’s log-likelihood function 

evaluated at θ̂  (e.g., Meijer & Sijtsma, 2001). The log-likelihood function—which is used to 

estimate test-takers’ ability parameters—ranges between 0 and negative infinity. One outcome of 

aberrant response patterns is a flatter log-likelihood function that is less close to the zero when 

compared to log-likelihood functions computed from non-aberrant response patterns. 

Recognizing that aberrant response patterns have flatter log-likelihood functions, l0 was proposed 

as a method to identify poor person-fit in individuals’ response vectors; however, this statistic 

has a noteworthy limitation. The l0 person-fit statistic is asymptotically (in terms of test length) 

referred to the normal distribution. Because tests of infinite length are problematic in real-world 

applications, the usefulness of l0 for detecting aberrant response patterns in actual test data is 

severely limited. In an attempt to create a form of the l0 statistic with a known sampling 

distribution, the lz person-fit statistic was developed (Drasgow, Levine, & Williams, 1985). The 

lz statistic was originally thought to follow a standard normal sampling distribution, so person-fit 

could be evaluated using lz and z-score flagging criteria. Later studies investigating the 

characteristics of the lz statistic have found that it is not normally distributed as originally 

thought when θ̂  is substituted for θ in computing the statistic (e.g., Nering, 1995; Schmitt, Chan, 

Sacco, McFarland, & Jennings, 1999; Snijders, 2001). 

 In a 2007 paper, Ferrando discusses a statistic, referred to as the lco scalability index, as a 

means to evaluate person-fit in the context of factor analysis. Using Ferrando’s notation, the 

observed response of person i to item j (Xij) is equal to 
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 ijijjijX εθλµ ++= , (2) 

and the expected value of Xij is equal to ijj θλµ +  with constant variance 2
jεσ  (Ferrando, 2007). 

In the unidimensional factor model, Ferrando (2007) defines lco as 
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where µ, λ, and 2
εσ  are item parameters from the factor analytic model and θ is a factor score. 

This index is a sum of squared, standardized residuals. It then follows that lco should be 

distributed χ2, with df = n. Ferrando (2007) states that when estimates are used in place of 

population parameters in the computation of lco, it is distributed χ2 with n – 1 degrees of 

freedom. As discussed by Ferrando (2007), the lco scalability index is analogous to the l0 person-

fit statistic, with the useful addition of lco following a known sampling distribution, which 

makes it more suitable than l0 for measuring person-fit using traditional hypothesis tests. 

 The lco scalability index, as described, is appropriate for one dimensional factor analytic 

models. In a subsequent paper, Ferrando (2009) described a generalization of the lco scalability 

index to accommodate models incorporating k factors: the M-lco scalability index, which is 

computed as 
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and is distributed χ2 with n – k degrees of freedom when estimates are used in its computation. 

 Person-fit statistics, including the limited sample discussed in the present paper and the 

much larger collection of such statistics that exist in the literature, serve a common purpose: to 

measure the extent to which an observed response vector conforms to expectation. Response 

patterns that conform to expectation are said to show good fit and response patterns that do not 
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are said to show poor fit, but reframing the question of “does the model fit the individual’s 

data?” to become “does a more complex model provide superior fit for the individual’s data?” 

may lead to the uncovering of valuable information when attempting to identify possible 

incidences of cheating. 

In the context of testing, unidimensional measurement models typically are assumed, 

with each item’s total variance being partitioned into a reliable component associated with a 

single latent construct that is common to all items and a separate random error component. Due 

to the local independence assumption, items are expected to function independently of one 

another after accounting for the common component. However, in certain situations related to 

cheating, there may be reason to expect that other sources of covariance between items—

unaccounted for by the default model’s single latent construct—may emerge and violate the local 

independence assumption. For example, should a portion of the items on a test become exposed, 

and some test-takers take the test with prior knowledge of these items, these test-takers may 

perform better than expected on these exposed items depending on the characteristics of the 

individuals and the exposed items.  

One approach to identify test-takers who encountered these exposed items is to use a 

person-fit statistic, which will compare the test-takers’ observed performance on the items to 

their expected levels of performance. An alternative approach would be to fit two competing 

models, the first a one-factor model (which is consistent in terms of dimensionality with the 

assumed measurement model for the test) and the second a two-factor model, and test for 

changes in person-fit across the nested models. The rationale behind this nested model 

comparison is grounded in the expectation that prior exposure to items, and the improved 

performance on these exposed items associated with this exposure, will violate local 



NESTED FACTOR ANALYTIC MODEL COMPARISON 7 

independence and create additional observed covariance between the exposed items that is 

inadequately accounted for by the assumed unidimensional model. When a second factor is 

added to the model, the additional covariance created by the exposure will be modeled by the 

exposed items’ loadings onto the secondary factor. For test-takers who had no exposure to any 

items prior to testing, a trivial level of improvement in person-fit for these test-takers should be 

observed in comparing changes in person-fit when a second factor is added to the model. For 

test-takers who did have contact with exposed items prior to taking the test, there should be a 

statistically-significant improvement in person-fit when the second factor is included in the 

model.  

The previously-discussed person-fit statistics for factor-analytic models, lco and M-lco, 

provide a means to perform statistical tests on changes in person-fit across nested models, 

although they have not hitherto been used for such purposes. Although the M-lco statistic was 

developed as a means to assess person-fit for factor analytic models with two or more factors, the 

steps as described by Ferrando (2009) are quite similar to how person-fit is assessed in 

traditional unidimensional testing scenarios: the fit of each individual’s observed response 

pattern is compared to expectation as defined by the factor analytic model, with poor fit indicated 

by large values of M-lco (with flagging criteria varying depending on the number of degrees of 

freedom). If both lco and M-lco are each distributed χ2 with n – k degrees of freedom when 

estimates are substituted into equations (3) and (4), then M-lco computed from a two-factor 

exploratory model should be distributed χ2 with n – 2 degrees of freedom, lco computed from a 

one-factor exploratory model should be distributed χ2 with n – 1 degrees of freedom, and their 

difference should be distributed χ2 with 1 degree of freedom. Statistically-significant values of 

this proposed lco difference method indicate significant improvement in person-fit with the 
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addition of a second factor to the model—a possible indicator of cheating. 

Method 

Simulation Methodology 

 A small simulation study was conducted to investigate the efficacy of the proposed lco 

difference method for detecting incidences of cheating. The test length used in this study was 15 

items, with each simulated item having five score categories. Item responses were simulated 

from the graded response model using WinGen (Han, 2007), with true b parameters distributed 

with a mean of 0 and standard deviation of 1 and true a parameters uniformly distributed 

between 0.5 and 2.0 with the D scaling constant included, and 5,000 examinees were simulated 

from a true θ distribution with a mean of 0 and standard deviation of 1. Item responses were 

simulated for 500 replications for each condition, given the true item and person parameters. 

 To simulate prior exposure for a subset of items and examinees, items were ordered by 

their true difficulty (based on the values of their expected score functions evaluated at 67% of the 

maximum possible score of 4) and examinees were sorted by their true θ levels. Following initial 

simulation of item responses as previously described, rendered item responses were manipulated 

in accordance with specific characteristics of each experimental condition. The research design 

for the present study is a 2 × 2 × 3 factorial with the following factors: number of exposed items 

(3, 6), the number of simulated cheaters in the total data set (51, or approximately 1% of the total 

number of test-takers; 501, or approximately 10% of the total number of test-takers), and the 

difficulty of exposed items (only easy items exposed; only difficult items exposed; a 

combination of easy, moderate, and difficult items exposed). Simulated test-takers chosen to 

serve as “cheaters” in the data set were selected in equal numbers from three points on the ability 

distribution. One-third of cheaters were the simulated test-takers with the lowest true ability 
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levels, one-third were just below the 50th percentile of the ability distribution, and the remaining 

one-third being selected near the 25th percentile of the distribution. Exposed items were chosen 

based on their ordered difficulty levels. In the “easy” conditions, either the three or six 

(depending on the number of exposed items in a given condition) least difficult items were 

selected to be exposed. In the “hard” conditions, either the three or six most difficult items were 

selected to be exposed. In the “spread difficulty” condition, the least difficult items, the most 

difficult items, and the items at the midpoint of the difficulty distribution were chosen to serve as 

exposed items. In conditions with three exposed items, a single easy, moderate, and difficult item 

were selected in the “spread” condition. In conditions with six exposed items, two items each 

were selected from these regions. 

 After identifying cheaters and exposed items, cheating was simulated by comparing test-

taker status (cheater versus non-cheater) and item status (exposed versus not exposed). In 

instances where simulated cheaters encountered simulated exposed items, a random number was 

drawn, which resulted in the originally-simulated item response having a 0.90 probability of 

being recoded to the maximum possible value of 4. If the random draw did not result in the item 

response being recoded to 4, the originally-simulated value was left unchanged. This process was 

repeated independently for each instance of a simulated cheater encountering a simulated 

exposed item.  

In addition to the 12 previously-described conditions, an additional condition was 

included, which included item responses simulated from the same true population parameters 

that were used in the 12 experimental conditions, but with no additional manipulations 

performed on item responses from this condition. This condition was included as a means to 

investigate the distribution of the lco difference values and to assess Type I error rates. 
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Analysis 

 Following data simulation, exploratory factor analytic models were fit to the manipulated 

data sets. For each data set, both a 1 and 2-factor exploratory factor analysis model was fit to the 

data using Mplus with robust maximum likelihood estimation for both models and quartimin 

oblique rotation for loadings from the two-factor model. For each simulated examinee, lco, M-

lco, and their difference were estimated. For the purposes of recording hit rates and Type I error 

rates, an alpha level of α = 0.05 was selected for the hypothesis tests used in this study. 

Simulated test-takers with lco values greater than 23.68 (i.e., based on χ2 with df = 14) were 

flagged, and simulated test-takers with lco difference values greater than 3.84 (i.e., based on χ2 

with df = 1) were flagged as well. Flagging was performed on the lco statistic as a means to 

compare and contrast the novel method proposed in this study with a more traditional approach 

to estimating person-fit. 

Results 

 All one- and two-factor models converged. All models showed good fit, as evidenced by 

investigation of RMSEA, CFI, and TLI, and no improper solutions (e.g., Heywood cases) were 

observed. Percentages of simulated cheaters correctly flagged as such by the person-fit statistic 

(i.e., hit rates) and percentages of test-takers not simulated to be cheaters that were incorrectly 

flagged by the person-fit statistic (i.e., Type I errors) are provided in Table 1. As shown in this 

table, the lco difference method outperformed the more traditional lco method in terms of hit 

rates in 9 out of 12 experimental conditions. In terms of Type I error rates, both methods flagged 

slightly more than the expected 5% of simulated test-takers in the control condition in which no 

cheating behavior was simulated. Type I error rates varied across experimental conditions for 

both methods. 
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Discussion 

Performance Comparison 

 Generally speaking, the lco difference method outperformed the more traditional lco 

method in terms of correctly identifying simulated cheaters. Figure 1 illustrates some interesting 

trends observed in the hit rates for these two methods. As shown in this figure, the three graphs 

in the left column plot hit rates from conditions in which approximately 1% of the sample of 

5,000 test-takers within a given data set were simulated to be cheaters, and the graphs in the right 

column plot hit rates from conditions in which approximately 10% of the sample were simulated 

to be cheaters. When comparing performance of the lco statistic across the 1% and 10% 

conditions, hit rates decline somewhat uniformly, suggesting that lco is less successful in 

identifying instances of cheating when such behavior is more widespread. This observation that 

larger proportions of cheaters result in a reduction of power for a person-fit statistic such as lco is 

not altogether surprising, considering that lco is a residual-based person-fit statistic.  

Because person-fit statistics like lco measure the difference between observed and 

expected performance on an item, but the difficulty of the items—which influences the expected 

scores—is computed from observed responses, larger proportions of cheaters influence the 

estimated difficulty of items, so when larger proportions of cheaters are present, their influence 

lowers the estimated difficulty for exposed items, which results in smaller residuals when 

comparing observed versus expected performance on items, and therefore reduces the power of 

residual-based person fit statistics like lco. Contrasting that finding with results from the lco 

difference method, some reduction in power was observed in conditions where either only easy 

items or difficult items were simulated to be exposed, but the lco difference method appears to 

be more robust, with a smaller reduction in power than what was observed for the lco statistic. 
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Increasing the proportion of cheaters actually improved performance of the lco difference 

method when exposed items’ had a spread-out range of difficulty, because the additional cheaters 

helped the model to better estimate a second factor, which will be discussed in further detail 

shortly. 

For both methods, power increased in all conditions when the number of exposed items 

was increased from 3 to 6. This finding was not surprising, because more exposed items should 

be beneficial from a detection standpoint for both methods. For the lco statistic, a larger 

proportion of exposed items allows for more opportunities to observe large differences between 

observed and expected performance—although, similar to what was observed with increasing in 

the proportion of simulated cheaters—a “tipping point” will inevitably be reached when 

increasing the proportion of exposed items on a test, and the influence of the large number of 

exposed items on cheaters’ estimated ability levels will make them more difficult to detect. For 

the lco difference method, having 6 exposed items as opposed to 3 makes it easier to estimate a 

second factor for the exposed items, so the observed increase in power is not unexpected. 

 In only one condition was the performance of the lco difference method extremely poor, 

and that condition was the one in which approximately 1% of test-takers were simulated to be 

cheaters, 3 out of 15 items were simulated to be exposed, and the difficulty of exposed items was 

spread out. Only 12.5% of simulated cheaters in this condition were correctly identified by the 

lco difference method, compared with a 52.0% hit rate from the lco statistic, which is not itself 

incredibly impressive, but an improvement nonetheless. Upon closer examination of rotated 

factor loadings from the two-factor model, it became apparent that in this particular condition—

with very few simulated cheaters, few simulated exposed items, and exposed items having very 

different difficulty levels from one another—that a second factor failed to emerge, which is why 
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so little power was observed in this condition. Power improved dramatically with either the 

addition of more exposed items or more cheaters because a much more prominent second factor 

emerged in both cases. 

Limitations 

Practical considerations. The lco difference method described in this paper represents 

one manifestation of a promising new direction in assessing person-fit, but its potential for use in 

practical testing applications is currently limited. With future changes coming by way of next 

generation assessments, there may come a day in which tests comprised entirely of 

polytomously-scored items with sufficient score categories to be included in factor analytic 

models become a reality, but for the time being, multiple-choice items dominate the testing 

landscape. The method described in the present paper is not well-suited to assess person-fit for 

dichotomously-scored items. Most common applications of factor analysis—those that use ML 

estimation in particular—assume that observed variables are normally distributed. Dichotomous 

variables violate that assumption. Of course, there are well-documented ways to get around the 

dichotomous indicator variable problem—most often by estimating a tetrachoric correlation 

matrix from the dichotomous response data and using either a weighted least squares or a 

modified weighted least squares estimation method for the model (e.g., Brown, 2006). The issue 

that remains is that the lco and M-lco statistics make a rather important assumption that each 

item’s residual variance from the factor analysis model accurately estimates the error associated 

with observed scores. Because both lco and M-lco use the square root of the item’s FA residual 

variance estimate to compute standardized residuals, which are then squared and summed to 

compute the statistic, if the items’ residual variance estimates from the model do not adequately 

represent error variance, then the residuals are not properly standardized, and therefore the 
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resulting distribution of the lco or M-lco statistic is not χ2 with df = n – k. This issue was 

observed in preliminary attempts to apply this method to test comprised of dichotomous data and 

requires further research in the future. 

 Simulation methodology. Simulations are useful for research such as this because they 

provide both an opportunity to control desired characteristics of the data and because they allow 

true characteristics of items and test-takers (i.e., true difficulty, true ability level, exposure status, 

cheater status) to be known so accurate counts of hit rates and error rates can be made, neither of 

which is possible when using data from real-world testing situations. However, the simulation 

methodology used in this study is somewhat simplistic, which may limit the extent to which 

these results generalize to real-world testing situations. Aside from the influence of cheating 

behavior, no systematic sources of model misfit were introduced into the simulation, so the 

resulting data that were not manipulated were most likely unrealistically clean and 

unidimensional compared to data obtained from a real-world test. Other potential sources of 

multidimensionality, such as differential item functioning, for example, provide a possible 

confound for a methodology such as the one proposed in this paper. 

Similar to potential concerns with the fidelity of simulation of non-manipulated item 

responses, it is likely that real-world manifestations of item responses obtained from exposed 

items are somewhat different in appearance and psychometric characteristics than their 

manifestation in the present study. Further research, investigating item responses submitted by 

individuals known to have prior exposure to test items before testing would be beneficial for 

improving the fidelity of cheating simulation in future studies. 

Generalizing results. Performance of the novel lco difference method proposed in this 

paper was contrasted with the lco statistic as a means to compare the performance of this new 
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proposed methodology to a benchmark that is similar in application to more traditional person-fit 

statistics, with the goal being to draw comparisons between a method that seeks to answer the 

question as to whether or not the observed data fit the model (lco) versus a method that seeks to 

answer the slightly different question as to whether or not a competing model significantly 

improves fit (lco difference). The present research found evidence that there may be situations in 

which the proposed lco difference method may have more power to detect cheating when 

compared to more traditional approaches such as lco, but these findings do not necessarily 

generalize across all current approaches to person-fit. There are numerous, diverse person-fit 

statistics, which are known to have various strengths and weaknesses (Karabatsos, 2003). The 

results of this study indicate there may be situations in which nested model comparison has 

superior power when compared to the lco statistic, but this may not be true when comparing the 

proposed method to all currently-existing methods for evaluating person-fit. 

Distribution of the lco difference. When making nested model comparisons, it is 

assumed that adding complexity to the model does not degrade model fit. In factor analysis, for 

example, adding an additional factor is not expected to negatively impact model fit indices. 

Adding more complexity—assuming identification issues do not come into play—is not 

expected to harm the fit of the model. There may be a large improvement in fit, or the 

improvement may be trivially small, but changes in fit are expected to always go in one direction 

when adding complexity. The same would be expected in the case of the lco difference method: 

the lco statistic computed from the one-factor model should always be larger to some extent than 

the M-lco statistic computed from the two-factor model (keeping in mind that poor fit is 

indicated by large values of these statistics and also that lco should have one additional degree of 

freedom compared to M-lco), but there were observed instances in this study where the value of 
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M-lco was larger than the value of lco, indicating paradoxically that the two-factor model had 

worse fit for some simulated test-takers when compared to the one-factor model. The exact 

reasons for this observation remain unknown at this time. It is possible that issues with rounding 

error associated with how output from the FA models was read and used in computation played a 

role, but until this issue is fully resolved, it does call into question the assumption that the lco 

difference statistic follows a χ2 distribution. Further research is required on this topic. 

Conclusion 

 The present study has provided evidence that comparison of changes to person-fit across 

nested factor analytic models may hold potential as a means to detect when cheating has 

occurred by means of item exposure. Additional research is warranted to compare nested model 

comparison to a wider range of more traditional person-fit statistics, and further work is needed 

to develop a satisfactory method for applying these techniques to dichotomous data. 

Furthermore, additional research into the sampling distribution of the proposed lco difference 

statistic is required. 
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Table 1 

Hit Rate and Type I Error Rate Summary 

Condition  lco Difference  lco 
Exposed 

Items 
Exposed 

Difficulty 
% 

Cheaters   Hit % Type I %   Hit % Type I % 
3 Easy 1  68.1 5.4  48.9 6.8 
  10  59.8 4.5  7.7 5.7 
 Hard 1  81.4 5.9  87.4 6.6 
  10  79.7 1.9  29.7 4.8 
 Spread 1  12.5 6.1  52.0 6.9 
  10  65.5 2.6  12.1 5.9 
6 Easy 1  83.5 5.8  65.2 6.6 
  10  78.5 2.9  44.4 4.3 
 Hard 1  97.3 5.2  93.5 6.1 
  10  89.0 2.4  78.3 2.5 
 Spread 1  57.3 5.4  83.4 6.5 
  10  86.5 2.4  52.3 4.3 

Control  - 6.1  - 7.2 
Note. Hit rates provide the percentage of simulated cheaters correctly flagged by the person-fit 

statistic within that condition. Type I error rates for the 12 experimental conditions provide the 

percentage of test takers not simulated to be cheaters that were incorrectly flagged by the person-

fit statistic. Type I error rates for the control condition provide the percentage of simulated test-

takers flagged by the person-fit statistics in the condition in which no cheating was simulated. 
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Figure 1. Hit rate comparison across experimental conditions. 


