The Analysis of the Classroom Behavior Observation Tool: Triangulating on Disruptive Classroom Behavior in the Evaluation Process

Steven W. Lee
Julia Shaftel
Jeaveen Neaderhiser
Jessica Schuttler
University of Kansas

Program Evaluation, Discipline Problems & School Reform

- Goals for school reform initiatives frequently involve reducing discipline problems (i.e., SSHS; IES).
- Classroom discipline problems affect school learning (Wang, Haertel & Walberg, 1993; Fraser & Fisher, 1982; Moos, 1980).
- Effects of Classroom Environment on Learning (Fraser & Fisher, 1982; Moos, 1980)
- Peer Influence on Behavior and Learning (Dishion, McCord, & Poulin, 1999; Poulin, Dishion & Burraston, 2001)
Measuring Discipline/Behavior Problems

- Individual Behavior Rating Scales (Achenbach & Rescorla, 2001; Reynolds & Kamphaus, 2004).
 - Good psychometric properties
 - Completed by the teacher, parent and/or student.
 - Designed to detect psychopathology and assist with diagnosis.
 - Time consuming (teacher respondent 10-20 minutes per child – 3.5 to 6.5 hours for a class of 25)
 - Expensive ($1.35 a protocol)

- Office Discipline referrals (ODRs); Suspensions, Expulsions.
 - Severe problems only.
 - Differing criteria for referring or suspending
 - Inconsistent data collection.
 - No reliability or validity data.

- Classroom Climate measures.
 - Not a measure of disruptiveness or management problems.
The Classroom Behavior and Asset Scale (CBAS) Family

Rationale: **Develop a family of instruments that can reliably measure disruptive behavior and assets at the whole class level.**

Classroom Behavior and Asset Survey - Teacher (CBAST)

Classroom Behavior and Asset Survey - Student (CBASS)

Classroom Behavior and Asset Observation (CBAO)

Assumptions

- Social behavior and student characteristics impact academic performance.
- Students in groups behave differently than students in isolation.
- Behavior affects other students (contagion effect).
- Social/behavioral assessment of whole classrooms and schools can inform program evaluation and building improvement efforts.
CBAS Development

- **Phase One, CBAST Exploration and Development (2001-2002):**
 - Open-ended survey of national sample for examples of behavior problems and student assets that impact classroom functioning; pilot test with 19 teachers at local private elementary school

- **Phase Two, CBAST Refinement (2003-2006):**
 - 333 teachers in 24 local schools; measured four behavioral dimensions: time lost, number of students, frequency, severity; compared reliability and consistency of scales
 - 466 teachers in 22 schools; scale increased from 5 to 8 points; measured only number of students
 - 303 teachers in 22 schools; no change in scale
 - 347 teachers in 21 schools; items on asset and problem scales improved and increased

- **Phase Three, CBASS Field Test (2007):**
 - 59 teachers and 543 students in 60 classes grades 4-12

- **Phase Four, CBAO Field Test (2009):**
 - Present study

CBAST Report
Classroom Behavior and Asset Observation (CBAO)

- Rationale: to triangulate teacher and student ratings with observed behavior in classroom
- Hypothesis: Observations of high-frequency observable behaviors will correlate with teacher ratings of same behaviors.
- Method:
 - Selected 14 observable behaviors from 60 items on CBAS
 - Three categories of behavior based on CBAS factors:
 - Asset (+): engaged, on task, attentive
 - Inattentive (0): off task, disengaged, out of seat
 - Disruptive (-): aggressive, interfering with others
 - Momentary time sampling (1-3 sec) of each student in systematic sweep of classroom using seating chart completed by teacher
- Observers: 3 instructional coaches, 6 school personnel, 1 graduate student; inter-rater reliability r = .71-1.0
- Participants: 69 teachers in 66 classrooms in 30 high schools
- Time frame: 6 weeks during April and May 2009
CBAO Results

- Complete data for 798 students in 64 classes
 - Mean of 14 students (3-24) and 28 intervals (5-55) per class
 - Average student behavior (percent of observed intervals):
 - 80% positive
 - 15% inattentive
 - less than 1% disruptive
 - Differences by class are sizeable and readily apparent
- Easily interpretable but does not match analytical unit of CBAS
- Transformation to number of students in class involved re-entering data, flagging each student for each behavior, summing across classes:
 - Over 99% of students showed positive behavior at least once
 - 70% of students showed inattentive behavior at least once
 - 8% of students showed disruptive behavior at least once.
 - Differences by class are not apparent or interpretable
- Matches the CBAS in units but not in meaning; is not easy to interpret or to use for intervention planning or monitoring.
Conclusions and Future Directions:

- **Problems with CBAO:**
 - CBAO observations captured only 14 of 60 behaviors from CBAS
 - Key low frequency behaviors do not occur during class
 - Difficult to discriminate similar behaviors in 1-3 seconds
 - Lost specificity by using three broad behavior categories
 - Observations are often unreliable when single observers are used (Weinrott & Jones, 1984) but expensive for multiple observers

- **Unknown relationship to CBAS:**
 - Factors cannot be meaningfully compared when based on fewer examples on CBAO than on CBAS
 - What proportion of observations or examples of a category of behavior correlates with rater classifying student into that behavior category on CBAS? Different for different types of behavior?

- **Where do we go from here?**
 - Investigate CBAR: direct behavior rating of students by teacher immediately after class session
 - Continue validity study of CBAS with repeated use during school year (benchmarking) and comparison to individual rating scales