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Abstract 

 

This article analyzes the impact of test characteristics on Belov and Armstrong’s (2009) two-

stage algorithm to identify aberrant candidate responses. The two-stage algorithm developed by 

Belov et al. (2007) and Belov and Armstrong (2009) is based on Kullback-Leibler Divergence 

(KLD) and the K-index to detect answer copying by comparing the posterior distributions of 

candidate ability between the operational and pretest parts of an examination. Because the two-

stage algorithm compares these two parts, the accuracy of the procedure is sensitive to the 

psychometric characteristics and structure of the individual components. However, in many 

licensure and certification examinations that are administered via CAT, MST, and LOFT, the 

structural differences between these two parts is not strictly defined. In this study, we analyze 

how different lengths and difficulties of pretest portions, along with the amount of copying, 

affect the performance of the two-stage algorithm using Type I and Type II error rates. It is 

found that Type I error is consistently low across conditions, yet Type II error is very sensitive to 

pretest length, pretest item difficulty, and the amount of copying simulated.   
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Introduction 

  

 Before the introduction of the two-stage Kullback-Leibler Divergence (KLD) method by 

Belov et al. (2009) to detect answer copying, many different statistical methods have been 

developed to detect aberrant candidate responses. These include the K-Index method by Holland 

(1996), person fit statistics, and cumulative sum statistics (CUSUM), among others. However, 

most of these methods were designed to detect more general aberrant candidate responses. In 

contrast, Belov et al. (2009)’s two-stage KLD method was specifically designed to detect the 

type of answer copying that could happen in a large scale high-stakes test, such as the Law 

School Admission Council (LSAC) exams. The key idea behind the algorithm is to first filter 

aberrant candidate responses by using the KLD index, and then compare these flagged responses 

with all possible source candidates by using the K-index. 

 As explained in Cover and Thomas (1991), the KLD is defined by 
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In here,       is the posterior probability for the operational portion of an exam and       is the 
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 The KLD, denoted by        , is widely used in information sciences to measure 

entropy differences between two different signals (Cover and Thomas, 1991). In general, a large 

KLD value indicates a divergence in the examinee’s performance between the two components 

of the exam. Belov et al. (2009) shows that the two-stage KDL algorithm provides superior 

performance in detecting answer copying over the K-Index method. Yet, quality performance of 

this method is based on two preconditions: 

 The operational parts for test takers sitting in close proximity are generally identical. This 

helps find the asymptotic/experimental distribution of the KLD-index in advance. 

 The operational and pretest parts of the exam should have statistical characteristics 

similar to each other to ensure the compatibility of an examinee’s performance on the two 

parts. 

However, examinations vary in the extent to which they satisfy these conditions listed above. 

The operational and pretest portions may have notably different psychometric properties, 

especially in exam formats such as CAT, CBT and LOFT. Additionally, the statistical properties 

of pretest items are generally unknown in advance, making it difficult to build a form to satisfy 

the second condition. 

 This simulation study considers several factors (the percentage of pretest items in the 

exam, the difficulty level of the pretest items, the percentage of copying items), and evaluates the 

impact of these factors on the performance of the two-stage KLD method to detect answer 

copying. The results of this study will be important in identifying test characteristics where the 

two-step KLD algorithm may be appropriately applied to identify answer copying and other 

aberrant candidate response behavior.   
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Purpose of the Study 

 

 As a first step to expand the applicability of the two-stage KLD algorithm to various 

exam structures such as CAT, MST, and LOFT that are commonly used in licensure and 

certification exams, this study evaluates the stability of the two-stage KLD algorithm for one of 

the two preconditions described above. If the operational and pretest parts of the exam have 

different statistical characteristics, what would be the impact of this difference on the 

performance of the two-stage algorithm? This study provides an answer to this question by 

analyzing, via simulation, the performance of the two-step algorithm for exams with mixed total 

form lengths having different operational-to-pretest length ratios, and for exams with varying 

difficulty levels of the pretest items in comparison to the operational items. We also manipulate 

the percent of items copied by copying examinee pairs. More specifically, this study answers the 

following questions: 

 First, how does the ratio of pretest to operational items affect the performance of 

the two-stage KLD algorithm to detect answer copying? Even if most high-stakes 

linear exams have a relatively well-defined ratio of pretest to operational items, 

this structure can be changed very easily during the post-administration review 

process. Moreover, in many CAT, MST, and LOFT exams that are administered 

continuously, the pretest items are inserted into the item bank and tested 

depending on need, making it hard to keep a fixed ratio between operational and 

pretest items. So, it is important to understand how the two-stage algorithm works 

when applied to exams with different numbers of pretest items. 
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 Second, how does the difficulty level of pretest items affect the performance of 

the algorithm to detect answer copying?  Pretest items are by nature items being 

tested on the real test population. Even if content specialists may have some 

intuition on difficulty levels of the pretest items, most of the time it cannot be 

accurately predicted. Since most testing organizations, especially those interested 

in using CAT, MST, and LOFT,  insert several pretest item blocks into the 

operational pool simultaneously to save cost, it is important to understand how the 

two-stage algorithm works when applied to exams with different pretest item 

difficulty levels.  

 Third, how does the percentage of answer copying affect the performance of the 

detection algorithm? In most licensure and certification exams administered 

through CAT, MST and LOFT, both the percentage of candidates who do the 

answer copying and the percentage of items whose answers are copied are 

limited. Belov and colleagues (2009) provide a partial answer to this question 

when a test has 100 operational and 25 pretest items. They reported an almost 

47% increase in Type II error when the percentage of answer copying is reduced 

from 100% to 60%. In this study, we investigate how different percentages of 

answer copying affect the performance of the detection algorithm under different 

exam structures between operational and pretest items. 
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Methods 

 The KLD two-stage algorithm is based on two fundamental statistical concepts: 

Kullback-Leibler Divergence (KLD) (Cover & Thomas, 1991; Kullback & Leibler, 1951) and 

the K-Index probability (Holland, 1996). Given two posterior distributions      and      of 

candidate abilities over operational and pretest parts of the exam, the KLD is defined by Eq. (1). 

The KLD is a non-equivalent measure of the relative entropy difference between the two 

posterior distributions. The KLD is transitive, but it does not satisfy the symmetric relationship. 

Using the same terminology and notation used in Holland (1996), the K-Index is defined as 

                            (4)  

where 

       is the subject and   is the source. 

     Response arrays. 

        Number of matching incorrect responses 

shared by two response arrays   and  . 

      Number of incorrect responses in  . 

      Response array by the source  . 

It is a conditional agreement probability that measures the proportion of examinee pairs in the 

population with   or more matching incorrect answers. A detailed rationale of the definition and 

two equivalent interpretations of the K-Index are described in Holland (1996). Let T represent 

the total number of items in the exam,    the number of incorrect responses by the source,    

the number of incorrect responses by the subject, and   the number of matching incorrect 

responses between the source and the subject. Then, the K-Index can be approximated by a 

binomial distribution (Holland, 1996): 
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In here, the probability      is defined by 
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The probability       is called the Kling function originally developed by F. Kling and used by 

Holland (1996) to estimate K-index. The Kling function is a monotonically increasing piecewise 

linear function. The slope parameter   can be estimated from the empirical data as described in 

detail by Belov et al. (2009), and can differ from one administration to another. In this study,  

       is used to ensure a conservative estimate for the detection of answer copying. 

 The KLD two-stage algorithm proposed by Belov et al. (2009) to detect answer copying 

can be summarized as follows:  

Algorithm 

Step 1: Given threshold value    , create a list of candidates whose KLD value is greater 

than    . 

Step 2: For each candidate detected in Step 1, compare the K-index of the candidate with 

other candidates who belong to the same group as the candidate. If the K-index is smaller 

than a given threshold value   , report the pair of candidates and manually review their 

seating and test booklets. 

Belov et al. (2009) describe the procedures to calibrate the threshold value     by approximating 

cumulative distributions of empirical KLDs using the lognormal distribution. In this simulation 

study, the threshold value was determined by following a similar procedure, but using the 
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simulated data set instead of empirical data set and choosing the     to be equal to the 5% 

significance level.   

Simulation Design  

Together, the study involves three design factors: (1) percentage of pretest items: 5%, 

10%, 20%, and 30%; (2) difficulty level of pretest items: easy, medium, and hard; (3) percentage 

of answer copying: 60%, 70%, 80%, 90%, and 100%. Fully-crossing these design factors leads 

to           different conditions being examined (see Table 1).  

 

Table 1 Simulation Conditions 

Design Factor Design Level Number of Levels 

Percentage of pretest items 5%, 10%, 20%, 30% 4 

Difficulty level of pretest items Easy, Medium, Hard 3 

Percentage of answer copying 
60%,  70%, 80%, 90%, 

100% 
5 

 Total 60 

 

 For each of these 60 conditions, 10,000 person ability estimates are sampled from a 

normal distribution with mean 0 and standard deviation 1 (i.e.          ), and then the 10,000 

simulated candidates are randomly split into 100 groups of 100 candidates. These groups 

represent the group of candidates taking the test at the same test center. All candidate responses 

are generated using the three-parameter logistic function      . To simulate answer copying, we 

add 100 aberrant pairs, one pair in each of the 100 groups. The ability level    of the source 

follows the uniform distribution         and the ability level    of the subject is chosen so 

that          . This is done to ensure a meaningful ability level difference between the 

source and the subject regardless of the difficulty level of the administered exam. 
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Table 2 Difficulty Parameter Distributions by Condition 

 Operational  

Items 

Pretest Items 

 

5 10 20 30 

Easy Mean -0.5142 -2.15633 -2.1689 -2.18265 -2.12252 

 

Std 0.892716 0.356177 0.574203 0.528753 0.950627 

Medium Mean -0.5142 -0.47093 -0.5353 -0.50591 -0.55289 

 

Std 0.892716 0.402618 0.682701 0.584604 0.970799 

Difficult Mean -0.5142 0.982048 0.995776 1.044194 0.966271 

 

Std 0.892716 0.966494 0.974198 0.946799 1.197682 

  

For the simulation study, 12 different forms are generated in total. All forms have 100 

operational items so that the percentage of pretest items matches the number of pretest items in 

each form. Table 2 shows means and standard deviations of item difficulties in these forms. All 

forms had the same operational part, and the operational items have mean difficulty value -

0.5142 and standard deviation 0.892716. The first four forms have relatively easier pretest items 

compared to the operational part. Even if they have a different number of pretest items, the mean 

values of these pretest items are close to -2.15. The next four forms have pretest items with 

almost the same difficulty as the operational part. The final four forms have relatively harder 

pretest items compared to the operational part, with mean difficulty levels close to 1.0. 
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Results 

All algorithms used in this study are implemented in MATLAB because of its high 

accuracy, which is especially important when computing and comparing posterior distributions 

requiring high levels of precision. 

 As explained above and shown in Table 1, the three main factors manipulated in this 

simulation study are (1) the percentage of pretest items (5%, 10%, 20%, and 30%), (2) the 

difficulty level of pretest items (easy, medium, and hard), and (3) the percentage of answer 

copying (60%, 70%, 80%, and 90%, and 100%). The results of these analyses are shown in 

Table 3 through Table 5 for the easy pretest items (Table 3), medium pretest items (Table 4), and 

hard pretest items (Table 5) respectively. All tables show Type I and Type II error rates, along 

with the number of correctly and incorrectly flagged examinee pairs broken out by number of 

pretest items included on the exam and the proportion of items that were copied. The Type I 

error rate shows the proportion of examinee pairs that were incorrectly classified as copying 

answers. The Type II error rate shows the proportion of examinee pairs who were actually 

simulated to be copying, yet were not flagged by the KLD two-stage algorithm. 

Looking at the results across Table 3 through Table 5, four patterns emerge. First, Type I 

error rates are consistently low and almost close to 0, regardless of condition. This pattern is 

similar to the results shown in Belov et al. (2009). This tells us that the procedure rarely 

inappropriately flags examinee pairs. Second, Type II error rates appear to be related to the 

number of pretest items included on the exam. As the number of pretest items increases, Type II 

error decreases. Thus, the procedure appears to gain accuracy in copying identification as the 

pretest portion lengthens. Third, Type II error rates appear to be affected by the difficulty level of 
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the pretest items. When the pretest items have a medium difficulty level, similar to the difficulty 

level of the operational items, the procedures appears to have higher accuracy in detecting 

answer copying. Fourth, Type II error also appears to be related to the percentage of items copied: 

as the percentage of copying increases, Type II error decreases. Again, the procedure gains 

accuracy with a higher percentage of copied items. Together, the difficulty level and the number 

of pretest items included on an exam, along with the percentage of answers actually copied, 

significantly impacts the sensitivity of this procedure. Graphing these Type II errors may make 

these relationships clearer; since the Type I error rates are so consistently low, they are not 

further explored. 

 Figure 1 through Figure 3 graph Type II error against the percentage of items copied for 

all pretest lengths for the easy items (Figure 1), the medium items (Figure 2), and the hard items 

(Figure 3). These graphs clearly show the trends noted in the previous paragraph from reviewing 

the Tables. First, length is consistently ordered in all three Figures: higher numbers of pretest 

items show consistently lower Type II error. Second, the lines consistently show a decrease from 

left to right, visualizing how Type II error decreases as the percentage of answer copying 

increases. Together, the Figures and the Tables show that both the pretest length and percent of 

answer copying are important design factors. The next Figures attempt to shed light on the final 

design factor, that is, the impact of the difficulty of the pretest items compared to the operational 

test portion. 

Figure 4 through Figure 7 show the Type II error across the different difficulty levels of 

the pretest items, holding the other factors constant. The Figures are repeated for the 5 item 

pretest length (Figure 4), the 10 item pretest length (Figure 5), the 20 item pretest length (Figure 

6), and the 30 item pretest length (Figure 7). Graphing these values allows a final pattern to 
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emerge: across all four Figures, the easy item pretest portions show the worst Type II error 

performance, and the medium difficulty performs best, closely followed by the hard pretest 

portion. 

 Together, the Tables and Figures tell a consistent story that the performance of the two-

stage KLD procedure under study is rather dramatically impacted by the characteristics of the 

pretest portion included in an exam. Specifically, the procedure’s performance is worse when the 

pretest portion is shorter, easier, and has less copying behavior. The procedure performs best 

when the pretest portion is longer and with a difficulty level matched to the difficulty level of the 

operational portion. Still, the Type I error is relatively low and unchanged by these factors. 

 

Discussion 

Recent scandals across a range of high-stakes tests have generated a renewed interest in 

statistical methods for identifying inappropriate examinee behavior. This has led to a variety of 

statistical methods being proposed, and heavily researched, for this purpose. This article focuses 

on one of these methods: the two-stage KLD procedure. Although this procedure has shown 

promise for identifying pairs of examinees likely sharing answers, it depends on strong 

preconditions, including that the operational and pretest portions of an exam need share similar 

characteristics. However, depending on the type of examination being implemented, this 

precondition may either (1) not be known in advance, or (2) not be possible at all. Thus, this 

study aimed at looking at the applicability of this procedure to different examination structures 

by varying the amount of copying behavior, the length of the pretest portion of the examination, 

and the difficulty level of the pretest portion of the examination. 



13 
 

This procedure relies on a comparison between the posterior ability distributions from the 

operational and pretest portions of an examination. If they differ significantly, we may posit that 

cheating behavior is present. By examining the way the procedure works, we can hypothesize 

that the factors considered here may impact its performance. Theoretically, we may expect that 

longer pretest portions may lead to better performance of the procedure because a longer form 

should lead to higher “reliability” for that portion of the exam, leading to a more consistent 

posterior distribution for the pretest posterior. Similarly, higher rates of answer copying should 

also translate into a greater distinction between posteriors, leading to higher rates of correct 

identification and lower rates of Type II error. Thus, if the pretest distribution should truly be 

different from that of the operational portion, both longer pretest portions and higher levels of 

cheating should lead to a higher likelihood of determining that the posteriors are, indeed, 

different.   

Next, we may even anticipate the trend that the easiest items would have the highest error 

rates and lowest power. First, the procedure itself assumes consistency between both portions of 

the examination. So, the medium pretest conditions would be expected to perform best, as the 

operational portion was also built from medium difficulty items. Next, the hard pretest items 

should also perform well, as they would make a relatively clear distinction between both 

posteriors. Thus, the empirical results shown above are entirely consistent with what would be 

theoretically expected. 

One consistent overall result is that Type I error rates are very low, approaching 0, 

regardless of the conditions manipulated here. This is a quite desirable property of a test security 

statistic. In contrast, Type II error rates are much more influenced by the manipulated factors. 

The results show that the power of the procedure is increased by increasing the pretest test length 
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and by matching the difficulty of this portion to the operational test. As noted, this is quite 

difficult since, by definition, the pretest portion of the exam has no operational data to determine 

its difficulty. Still, even when fulfilling the desired properties of the procedure of similar 

characteristics between test portions, the power is still not as high as may be desired for a test 

statistic. In the ideal case of medium pretest difficulty, 30 pretest items, and 100% answer 

copying, 97 out of 100 cheating pairs are correctly identified. This would represent rather 

organized cheating, and power rates decrease rapidly when moving away from this ideal 

combination of factors, down to 34 out of 100 when examining 60% copying. However, in a 

legal world where false positives may be more dangerous to an organization than missing an 

instance of inappropriate examinee behavior, a very low level of false accusations may be a 

desirable trade-off for rather fair rates of power.  

In conclusion, the performance of the two-stage KLD procedure shows consistently low 

Type I error. However, the procedure’s Type II error is highly contingent upon the psychometric 

properties of the pretest portion of an exam, including difficulty, length, and extent of cheating. 

Since the characteristics of the pretest portion are not typically known beforehand, this may limit 

the procedure’s operational use depending on the characteristics of the exams, as its power 

cannot be readily determined until after an exam is administered. Future research should not only 

look at factors influencing the procedure’s error rates, but also at ways in which power can be 

increased when considering different pretest characteristics and more moderate levels of 

examinee cheating behavior. 
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Appendix 

Table 3 Comparison Study of Type I and II Errors, Easy Pretest Items 

Number of 

Pretest 

Items 

% of 

Answers 

Copied 

Type I 

Error 

 Type II 

Error 

Number of 

incorrectly 

reported pairs 

 Number of 

correctly reported 

pairs 

 

60 0.0003 87 3 13 

 

70 0.0001 79 1 21 

5 80 0.0002 79 2 21 

 

90 0.0001 80 1 20 

 

100 0.0000 68 0 32 

 

60 0.0002 90 2 10 

 

70 0.0002 72 2 28 

10 80 0.0003 69 3 31 

 

90 0.0001 68 1 32 

 

100 0.0004 47 4 53 

 

60 0.0001 84 1 16 

 

70 0.0001 70 1 30 

20 80 0.0002 53 2 47 

 

90 0.0001 49 1 51 

 

100 0.0001 33 1 67 

 

60 0.0001 78 1 22 

 

70 0.0003 71 3 29 

30 80 0.0001 50 1 50 

 

90 0.0003 32 3 68 

 

100 0.0003 30 3 70 
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Table 4 Comparison Study of Type I and II Errors, Medium Pretest Items 

Number of 

Pretest 

Items 

% of 

Answers 

Copied 

Type I 

Error 

 Type II 

Error 

 Number of 

incorrectly 

reported pairs 

 Number of 

correctly reported 

pairs 

 

60 0.0001 89 1 11 

 

70 0.0003 76 3 24 

5 80 0.0000 72 0 28 

 

90 0.0001 48 1 52 

 

100 0.0003 43 3 57 

 

60 0.0003 71 3 29 

 

70 0.0001 68 1 32 

10 80 0.0004 52 4 48 

 

90 0.0003 34 3 66 

 

100 0.0003 14 3 86 

 

60 0.0006 76 6 24 

 

70 0.0001 54 1 46 

20 80 0.0006 30 6 70 

 

90 0.0003 17 3 83 

 

100 0.0008 6 8 94 

 

60 0.0006 66 6 34 

 

70 0.0003 48 3 52 

30 80 0.0005 28 5 72 

 

90 0.0004 10 4 90 

 

100 0.0005 3 5 97 
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Table 5  Comparison Study of Type I and II Errors, Hard Pretest Items 

Number of 

Pretest 

Items 

% of 

Answers 

Copied 

Type I 

Error 

 Type II 

Error 

 Number of 

incorrectly 

reported pairs 

 Number of 

correctly 

reported pairs 

 

60 0.0005 97 5 3 

 

70 0.0003 93 3 7 

5 80 0.0006 79 6 21 

 

90 0.0005 63 5 37 

 

100 0.0003 29 3 71 

 

60 0.0006 90 6 10 

 

70 0.0008 74 8 26 

10 80 0.0007 56 7 44 

 

90 0.0007 27 7 73 

 

100 0.0001 16 1 84 

 

60 0.0005 90 5 10 

 

70 0.0009 70 9 30 

20 80 0.0010 54 10 46 

 

90 0.0004 18 4 82 

 

100 0.0009 10 9 90 

 

60 0.0009 81 9 19 

 

70 0.0011 57 11 43 

30 80 0.0013 26 13 74 

 

90 0.0016 13 16 87 

 

100 0.0014 5 14 95 
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Figure 1 Comparison of Type II Error for Easy Pretest Items 

 

 

Figure 2 Comparison of Type II Error for Medium Pretest Items 
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Figure 3 Comparison of Type II Error for Hard Pretest Items 

 

 

 

 

 

Figure 4 Comparison of Type II Error across Difficulty Levels with 5% Pretest Items 
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Figure 5 Comparison of Type II Error across Difficulty Levels with 10% Pretest Items 

 

 

 

Figure 6 Comparison of Type II Error Across Difficulty Levels with 20% Pretest Items 
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Figure 7 Comparison of Type II Error Across Difficulty Levels with 30% Pretest Items 
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