Accessibility of Technology-Enhanced Tests for Students with Vision and Motor Disabilities

Julia Shaftel, Center for Educational Testing and Evaluation, University of Kansas

Purpose

A key feature of next-generation assessments will be their use of desktop, laptop, and touch-screen tablet technology for delivery of tests and collection of student responses. These assessments will include technology-enhanced (TE) items and tasks featuring interactivity, multimedia, varied response requirements including drag-and-drop and constructed responses, and complex scoring. Two of the more difficult accessibility challenges are visual disabilities that impede access to information presented in visual modalities, such as computer screens, and motor disabilities affecting a student’s interaction with physical interfaces such as keyboards, mice, and touchscreens. The purpose of this project is the investigation of accessibility of TE items and tasks for students with vision and motor disabilities through a series of empirical studies resulting in guidelines and recommendations for test developers and educators.

Evidence

Data sources include expert review, cognitive labs with individual students, teacher panels in participating states, and large-scale field testing. Experts in the instruction and assessment of students with vision and motor disabilities have conducted a review of prototype item and task types, technology-enabled accessibility features, and accommodations to produce an analysis of the anticipated accessibility for each item type with its associated technology-enabled accessibility features and with or without person- and computer-delivered accommodations. When item types are not accessible for students with vision and/or motor disabilities, technology-enhanced features that would make them accessible are being investigated. If item types are not amenable to technology-enhanced features, person-delivered accommodations and special tools that would permit accessibility will be evaluated. Alternate methods to assess the constructs will be explored and additional assessment item or task types will be produced.

The drag-and-drop item interface is inherently inaccessible to students who cannot see the screen or use a mouse or touchscreen to navigate. These items are difficult to transcribe into braille or print. However, these types of items may be intuitive, motivating, and efficient for students without vision or motor disabilities.

Evidence of Accessibility of TE Items and Tasks

Click-to-select interfaces are accessible for switch systems and can be translated into Braille and print.

Significance

The project will result in a clearer understanding of the types of technology-enhanced assessments and tasks that are and are not accessible for students with blindness, low vision, or motor disabilities. The ultimate result of this study will be a set of guidelines and recommendations for valid accessible assessments that provide the greatest score comparability and lead to sound inferences about achievement measured with technology-enhanced items and tasks for students with vision and/or motor disabilities. Through individualized cognitive labs, large-scale data collection, and the chance to use powerful methodological procedures on large groups of students with low-incidence disabilities, definitive outcomes regarding the usefulness of assessment procedures, tools, and accommodations as well as the validity of score inferences can be obtained.

For further information, please contact Julia Shaftel at jshaftel@ku.edu or visit the ATEA project website at http://ateassessments.org.

The contents of this presentation were developed under a grant from the U.S. Department of Education. However, those contents do not necessarily represent the policy of the U.S. Department of Education and you should not assume endorsement by the Federal government.